Spaceloft Insulation
TECHNICAL GUIDE
Contents

Introduction 3

Non-Combustibility and Fire Performance 4

- EN 13501-1 – Reaction to Fire Classification (Bodycote, Warrington Fire)
- ASTM E 84 – Surface Burning Characteristics (Bodycote Testing Group)

Mechanical and Dimensional Stability 4

- ASTM C 165 – Compressive Resistance (Aspen Aerogels, Inc.), report pending
- ASTM C 1101 – Flexibility at Ambient Temperature (Bodycote Testing Group), report pending
- ASTM E 228 – Linear Coefficient of Thermal Expansion (Netzsch)
- DIN 52275-2 – Determination of Linear Dimensions and Density (Frauenhofer Institute)

Thermal Measurements 5

- ASTM C 177 – Thermal Conductivity via Guarded Hot Plate, Full Curve (Netzsch)
- ASTM C 177 – Thermal Conductivity via Guarded Hot Plate, 10°C (FIW München)
- EN 12667 – Thermal Conductivity via Guarded Hot Plate, 10°C (FIW München)
- Specific Heat – (TPRL)
- EN ISO 8497 – Declaration of Conformity

Water Resistance 6

- ASTM C1104 – Water Vapor Sorption (Bodycote Testing Group), report pending
- ASTM C1511 – Water Retention, Repellency (Bodycote Testing Group), report pending
- ASTM E 96 – Water Vapor Transmission Rate (Bodycote Testing Group), report pending
- EN ISO 15148 – Determination of Water Absorption Coefficient by Partial Immersion (Frauenhofer Institute)
- EN ISO 15148 – Determination of Water Absorption Coefficient by Partial Immersion (Glasgow Caldonian University)
- EN ISO 12571 – Determination of Hygroscopic Sorption Properties (Frauenhofer Institute)
- EN ISO 12571 – Determination of Hygroscopic Sorption Properties (Glasgow Caldonian University)
- EN ISO 12572 – Determination of Water Vapour Transmission Properties (Frauenhofer Institute)
- EN ISO 12572 – Determination of Water Vapour Transmission Properties (Glasgow Caldonian University)
- DIN 52103 – Determination of Water Adsorption and Saturation Coefficient of Natural Stone and Mineral Aggregates (Frauenhofer Institute)
- EN ISO 12087 – Long Term Water Absorption by Total Immersion (Glasgow Caldonian University)

Appendix A 8
- EN 13501-1 – REACTION TO FIRE CLASSIFICATION (BODYCOTE, WARRINGTON FIRE)

Appendix B 12
- ASTM E 84 – SURFACE BURNING CHARACTERISTICS (BODYCOTE TESTING GROUP)

Appendix C 16
- ASTM E 228 – LINEAR COEFFICIENT OF THERMAL EXPANSION (NETZSCH)

Appendix D 24
- DIN 52275-2 – DETERMINATION OF LINEAR DIMENSIONS AND DENSITY (FRAUENHOFER INSTITUTE)

Appendix E 28
- ASTM C 177 – THERMAL CONDUCTIVITY VIA GUARDED HOT PLATE, FULL CURVE (NETZSCH)

Appendix F 37
- ASTM C 177 – THERMAL CONDUCTIVITY VIA GUARDED HOT PLATE, 10°C (FIW MÜNCHEN)

Appendix G 38
- EN 12667 – THERMAL CONDUCTIVITY VIA GUARDED HOT PLATE, 10°C (FIW MÜNCHEN)

Appendix H 39
- SPECIFIC HEAT – (TPRL)

Appendix I 42
- EN ISO 8497 – DECLARATION OF CONFORMITY

Appendix J 43
- EN ISO 15148 – DETERM. OF WATER ABSORPTION COEFFICIENT, PARTIAL IMMERSION (GLASGOW CALDONIAN UNIV.)

Appendix K 45
- EN ISO 12571 – DETERM. OF HYGROSCOPIC SORPTION PROPERTIES (GLASGOW CALDONIAN UNIV.)

Appendix L 48
- EN ISO 12572 – DETERM. OF WATER VAPOUR TRANSMISSION PROPERTIES (GLASGOW CALDONIAN UNIV.)

Appendix M 51
- EN ISO 12087 – LONG TERM WATER ABSORPTION BY TOTAL IMMERSION (GLASGOW CALDONIAN UNIV.)
Spaceloft is a flexible, nanoporous aerogel blanket insulation that reduces energy loss while conserving interior space in residential and commercial building applications. Spaceloft’s unique properties – extremely low thermal conductivity, superior flexibility, compression resistance, hydrophobicity, and ease of use – make it essential for those seeking the ultimate in thermal protection. Using patented nanotechnology, Spaceloft insulation combines a silica aerogel with reinforcing fibers to deliver industry-leading thermal performance in an easy-to-handle and environmentally safe product. Spaceloft is a proven, effective insulator in building applications, providing the highest R-value of any insulation material for maximum energy efficiency in walls, floors, roofs, framing, and windows.

Spaceloft Advantages

- Superior Thermal Performance – 2 to 4 times better than competing insulation products
- Reduced Thickness and Profile – Equal thermal resistance at a fraction of the thickness
- Less Time and Labor to Install – Easily cut and conformed to complex shapes, tight curvatures, and spaces with restricted access
- Physically Robust – Soft and flexible but with excellent springback, Spaceloft recovers its thermal performance even after compression events as high as 50 psi
- Shipping and Warehousing Savings – Reduced material volume, high packing density, and low scrap rates can reduce logistics costs by a factor of five or more compared to other insulations
- Simplified Inventory – The same Spaceloft blanket can be kitted to fit any shape or design
- Hydrophobic Yet Breathable – Spaceloft repels liquid water but allows vapor to pass through
- Environmentally Safe – Landfill disposable, shot-free, with no respirable fiber content

Specification Compliance and Performance

<table>
<thead>
<tr>
<th>Test Procedure</th>
<th>Property</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C 177</td>
<td>Thermal Conductivity via Guarded Hot Plate</td>
<td>13.1 mW/m*K @ 10°C</td>
</tr>
<tr>
<td>EN 12667</td>
<td>Thermal Conductivity via Guarded Hot Plate</td>
<td>13.1 mW/m*K @ 10°C</td>
</tr>
<tr>
<td>ASTM E 84</td>
<td>Flame and Smoke Spread</td>
<td>Class A: FSI <5, SDI 20</td>
</tr>
<tr>
<td>EN 13501-1: 2007</td>
<td>Reaction to Fire Performance</td>
<td>Passed Euroclass C-s1,d0</td>
</tr>
<tr>
<td>ASTM C 165</td>
<td>Compressive Stress / Strain</td>
<td>8.0 psi @ 10% strain, 30.5 psi @ 25% strain</td>
</tr>
<tr>
<td>Specific Heat</td>
<td>Specific Heat</td>
<td>1.000 J/g*K @ 40°C</td>
</tr>
<tr>
<td>ASTM E 96</td>
<td>Water Vapor Transmission Rate</td>
<td>1877 ng/Pasm² (dry cup method)</td>
</tr>
<tr>
<td>ASTM E 228</td>
<td>Linear Coefficient of Thermal Expansion (@ 10°C)</td>
<td>x: 1.06 x 10⁻⁶ K⁻¹, y: 1.90 x 10⁻⁶ K⁻¹</td>
</tr>
<tr>
<td>ASTM C 1104</td>
<td>Water Vapor Sorption</td>
<td>Mass Gain = 1.08%</td>
</tr>
</tbody>
</table>
Non-Combustibility & Fire Performance

EN 13501-1 – REACTION TO FIRE CLASSIFICATION (BODYCOTE, WARRINGTON FIRE)

The reaction to fire performance of Spaceloft was evaluated via BS EN 13501-1:2007. Spaceloft (5-10 mm) achieved a reaction to fire classification of C-s1, d0 for construction applications as a suspended ceiling membrane. EN 13823 and ISO EN 11925-2 were carried out as part of this testing and all results were compliant for Class C classification. See Appendix A.

ASTM E 84 – SURFACE BURNING CHARACTERISTICS (BODYCOTE TESTING GROUP)

Spaceloft was tested in accordance with ASTM E 84, the Standard Test Method for Surface Burning Characteristics of Building Materials. Spaceloft satisfies the criteria for a Class A rating with a flame spread index of <5 and a smoke developed index of 20. See Appendix B.

Mechanical and Dimensional Stability

ASTM C 165 – COMPRESSIVE RESISTANCE (ASPEN AEROGELS, INC.)

Compressive stress was measured at both 10% and 25% compressive strain. The average compressive stress was 8.0 psi @ 10% strain and 30.5 psi @ 25% strain. Report pending.

ASTM C 1101 – FLEXIBILITY AT AMBIENT TEMPERATURE (BODYCOTE TESTING GROUP)

Spaceloft was classified as flexible at room temperature according to ASTM C 1101 test results. Report pending.

ASTM E 228 – LINEAR COEFFICIENT OF THERMAL EXPANSION (NETZSCH)

The coefficient of thermal expansion of Spaceloft was tested via ASTM E 228 from -170°C to 100°C with a reference temperature of 20°C. The results at 10°C are: x = 1.06 x 10⁻⁵ K⁻¹, y = 1.90 x 10⁻⁵ K⁻¹. See Appendix C.

DIN 52275-2 – DETERMINATION OF LINEAR DIMENSIONS AND DENSITY (FRAUENHOFER INSTITUTE)

A series of tests was conducted at the Frauenhofer Institute to demonstrate the application suitability of Spaceloft in external thermal insulation composite systems. These tests include DIN 52275-2, EN ISO 15148, EN ISO 12571, EN ISO 12572, and DIN 52103. See Appendix D.
Thermal Measurements

ASTM C 177 – THERMAL CONDUCTIVITY VIA GUARDED HOT PLATE, FULL CURVE (NETZSCH)

Third-party validation of the thermal conductivity of Spaceloft was acquired at mean temperatures ranging from -160° to 150°C (-256° to 302°F) under a compressive load of 2 psi. See Appendix E.

ASTM C 177 – THERMAL CONDUCTIVITY VIA GUARDED HOT PLATE, 10°C (FIW MÜNCHEN)

Third-party validation of the thermal conductivity of Spaceloft was acquired at a mean temperature of 10°C under a compressive load of 2 psi. See Appendix F.

EN 12667 – THERMAL CONDUCTIVITY VIA GUARDED HOT PLATE, 10°C (FIW MÜNCHEN)

Third-party validation of the thermal conductivity of Spaceloft was acquired at a mean temperature of 10°C under a compressive load of 2 psi. See Appendix G.

SPECIFIC HEAT – (TPRL)

The specific heat of Spaceloft was measured from -60°C to 150°C. See Appendix H.

EN ISO 8497 – DECLARATION OF CONFORMITY

The values declared ($\lambda_{90,90}$) and reported on the product’s labels are determined according to the rule ISO 10456 and represent 90% of the production and with 90% of reliability. $\lambda_{90,90} = 0.014$ W/m*K. See Appendix I.
Water Resistance

ASTM C 1104 – WATER VAPOR SORPTION (BODYCOTE TESTING GROUP)

The average weight gained during the ASTM C 1104 testing was 1.08%. Report pending.

ASTM C 1511 – WATER RETENTION, REPELLENCY (BODYCOTE TESTING GROUP)

The average weight gained during the ASTM C 1511 testing was 3.9%. Report pending.

ASTM E 96 – WATER VAPOR TRANSMISSION RATE (BODYCOTE TESTING GROUP)

Both water and desiccant method were tested via ASTM E 96. The results for Spaceloft are 2319 ng/Pa*s*m (water method), 1877 ng/Pa*s*m (desiccant method). Report pending.

EN ISO 15148 – DETERMINATION OF WATER ABSORPTION COEFFICIENT BY PARTIAL IMMERSION (FRAUENHOFER INSTITUTE)

A series of tests was conducted at the Fraunhofer Institute to demonstrate the application suitability of Spaceloft in external thermal insulation composite systems. These tests include DIN 52275-2, EN ISO 15148, EN ISO 12571, EN ISO 12572, and DIN 52103. See Appendix D.

EN ISO 15148 – DETERMINATION OF WATER ABSORPTION COEFFICIENT BY PARTIAL IMMERSION (GLASGOW CALDONIAN UNIVERSITY)

The water absorption coefficient measured for Spaceloft is 0.0072 kg/m²*h⁰.⁵. Spacetherm is a UK trade name of Spaceloft. See Appendix J.

EN ISO 12571 – DETERMINATION OF HYGROSCOPIC SORPTION PROPERTIES (FRAUENHOFER INSTITUTE)

A series of tests was conducted at the Fraunhofer Institute to demonstrate the application suitability of Spaceloft in external thermal insulation composite systems. These tests include DIN 52275-2, EN ISO 15148, EN ISO 12571, EN ISO 12572, and DIN 52103. See Appendix D.

EN ISO 12571 – DETERMINATION OF HYGROSCOPIC SORPTION PROPERTIES (GLASGOW CALDONIAN UNIVERSITY)

Saturated salt solutions were prepared to give conditions of 33.0%, 53.0%, 79.5%, and 94.0% RH. The moisture content of the Spaceloft was measured at each humidity condition. Spacetherm is a UK trade name of Spaceloft. See Appendix K.
Water Resistance

EN ISO 12572 – DETERMINATION OF WATER VAPOUR TRANSMISSION PROPERTIES (FRAUENHOFER INSTITUTE)

A series of tests was conducted at the Fraunhofer Institute to demonstrate the application suitability of Spaceloft in external thermal insulation composite systems. These tests include DIN 52275-2, EN ISO 15148, EN ISO 12571, EN ISO 12572, and DIN 52103. See Appendix D.

EN ISO 12572 – DETERMINATION OF WATER VAPOUR TRANSMISSION PROPERTIES (GLASGOW CALDONIAN UNIVERSITY)

Two methods were used to determine the water vapor transmission properties of Spaceloft. The average dry cup and wet cup results were 0.337 MNs/g and 0.275 MNs/g respectively. Spacetherm is a UK trade name of Spaceloft. See Appendix L.

DIN 52103 – DETERMINATION OF WATER ADSORPTION AND SATURATION COEFFICIENT OF NATURAL STONE AND MINERAL AGGREGATES (FRAUENHOFER INSTITUTE)

A series of tests was conducted at the Fraunhofer Institute to demonstrate the application suitability of Spaceloft in external thermal insulation composite systems. These tests include DIN 52275-2, EN ISO 15148, EN ISO 12571, EN ISO 12572, and DIN 52103. See Appendix D.

EN ISO 12087 – LONG TERM WATER ABSORPTION BY TOTAL IMMERSION (GLASGOW CALDONIAN UNIVERSITY)

The long term water absorption by total immersion is determined by measuring the change in mass of the test specimen, totally immersed in water, over a period of 28 days. The excess water adhering to the surface, not absorbed by the test specimen, is removed by drainage. The Spaceloft achieved an average water absorption by volume of 6.3% during this test. Spacetherm is a UK trade name of Spaceloft. See Appendix M.
Appendix A EN 13501-1 – REACTION TO FIRE CLASSIFICATION (BODYCOTE, WARRINGTON FIRE)
Appendix A EN 13501-1 – REACTION TO FIRE CLASSIFICATION (BODYCOTE, WARRINGTON FIRE)

1. Introduction
This classification report defines the classification assigned to "Spaceloft", a silica based, aerogel insulation batting, in line with the procedures given in En 13501-1:2007

2. Details of classified product
2.1 General
The product, "Spaceloft", a silica based, aerogel insulation batting, is deemed as being suitable for construction applications, excluding flooring and linear pipe thermal insulation.

2.2 Product description
The product, "Spaceloft", a silica based, aerogel insulation batting, is fully described below and in the test reports provided in support of classification listed in Clause 3.1.

<table>
<thead>
<tr>
<th>General description</th>
<th>An insulation material backed by a calcium silicate substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product reference</td>
<td>"Spaceloft"</td>
</tr>
<tr>
<td>Detailed description/composition details</td>
<td>Silica based, aerogel insulation batting</td>
</tr>
<tr>
<td>Name of manufacturer</td>
<td>Aspen Aerogels, Inc.</td>
</tr>
<tr>
<td>Density</td>
<td>0.15 g/cm³</td>
</tr>
<tr>
<td>Weight per unit area</td>
<td>0.745 - 1.56 kg/m²</td>
</tr>
<tr>
<td>Thickness</td>
<td>5 - 10mm</td>
</tr>
<tr>
<td>Colour</td>
<td>White</td>
</tr>
<tr>
<td>Flame retardant details</td>
<td>See Note 1</td>
</tr>
</tbody>
</table>

Product reference	Promat – Brandenschutzbauplatten; Promatec-H
Generic type	Calcium Silicate based board
Name of manufacturer	Promat
Thickness	12mm
Density	870 kg/m³
Flame retardant details	The substrate is inherently flame retardant

Mounting and fixing details: The specimens were tested clipped to a calcium silicate substrate with bull dog clips.

Brief description of manufacturing process: Aspen Aerogels produces nanoporous insulating materials, the process involves casting of the aerogels into fibrous battings.

Note 1 - The sponsor of the test has confirmed that no flame retardant additives were utilized in the production of the product / component.
Appendix A EN 13501-1 – REACTION TO FIRE CLASSIFICATION (BODYCOTE, WARRINGTON FIRE)

3. Test reports/extended application reports & test results in support of classification

3.1 Test reports/extended application reports

<table>
<thead>
<tr>
<th>Name of Laboratory</th>
<th>Name of sponsor</th>
<th>Test reports/extended application report Nos.</th>
<th>Test method / extended application rules & date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodycote warringtonfire</td>
<td>Aspen Aerogels Inc</td>
<td>WF 181535, WF 181536</td>
<td>EN 13823</td>
</tr>
<tr>
<td>Bodycote warringtonfire</td>
<td>Aspen Aerogels Inc</td>
<td>WF 181537</td>
<td>EN ISO 11925-2</td>
</tr>
<tr>
<td>Bodycote warringtonfire</td>
<td>Aspen Aerogels Inc</td>
<td>WF 182633</td>
<td>EN 15117</td>
</tr>
</tbody>
</table>

3.2 Test results

<table>
<thead>
<tr>
<th>Test method & test number</th>
<th>Parameter</th>
<th>No. tests</th>
<th>Continuous parameter - mean (m)</th>
<th>Compliance parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 13823</td>
<td>FIGRA 0.23</td>
<td>4</td>
<td>145.21, 137.28</td>
<td>Compliant</td>
</tr>
<tr>
<td></td>
<td>THR 400</td>
<td></td>
<td>1.16, 1.55</td>
<td>Compliant</td>
</tr>
<tr>
<td></td>
<td>LSF</td>
<td></td>
<td>No</td>
<td>Compliant</td>
</tr>
<tr>
<td></td>
<td>SMOGRA</td>
<td></td>
<td>0</td>
<td>Compliant</td>
</tr>
<tr>
<td></td>
<td>TSP<0.05</td>
<td></td>
<td>39.8, 38.72</td>
<td>Compliant</td>
</tr>
<tr>
<td>EN ISO 11925-2</td>
<td>F5</td>
<td>6</td>
<td>0</td>
<td>Compliant</td>
</tr>
<tr>
<td>(30s exposure – surface)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN ISO 11925-2</td>
<td>F5</td>
<td>6</td>
<td>0</td>
<td>Compliant</td>
</tr>
<tr>
<td>(30s exposure – edge)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix A EN 13501-1 – REACTION TO FIRE CLASSIFICATION (BODYCOTE, WARRINGTON FIRE)

4. Classification and field of application

4.1 Reference of classification
This classification has been carried out in accordance with clause 8 of EN 13501-1:2007

4.2 Classification
The product, "Spaceloft", a silica based, aerogel insulation batting, in relation to its reaction to fire behaviour is classified:

Reaction to fire classification: C-s1,d0

4.3 Field of application
This classification is valid for the following end use applications:

i) Construction applications, excluding flooring and linear pipe thermal insulation

This classification is also valid for the following product parameters:

- Product thickness: 5-10mm
- Product density: No variation allowed
- Product colour: No variation allowed
- Product composition: No variation allowed
- Product construction: No variation allowed

The classification is valid for the following substrates and air gaps:

Directly against an A1 or A2 substrate with a density of 615 kg/m³ and greater

5. Limitations
This classification report does not represent type approval or certification of the product.

SIGNED

APPROVED

Leigh Hill
Technical Consultant
Technical Department

Janet Murrell
Technical Manager
Technical Department
on behalf of:
BODYCOTE
warringtonfire

This copy has been produced from a .pdf format electronic file that has been provided by Bodycote
warringtonfire to the sponsor of the report and must only be reproduced in full. Extracts or
abridgements of reports must not be published without permission of Bodycote
warringtonfire.
The original signed paper version of this report is the sole authentic version. Only original paper
versions of this report bear authentic signatures of the responsible Bodycote
warringtonfire staff.
Appendix B ASTM E 84 – SURFACE BURNING CHARACTERISTICS (BODYCOTE TESTING GROUP)

ELECTRONIC DRAFT COPY

ASTM E 84 Surface Burning Characteristics of "Spaceloft" Blanket Insulation

A Report To: Aspen Aerogels Inc.
30 Forbes Road, Building B
Northborough, MA 01532
USA

Phone: (508) 691-1132
Email: cnmclauren@aerogel.com

Attention: Cindy MacLaurin

Submitted by: Fire Testing

Report No. 08-002-884(A)
4 Pages

Date: November 21, 2008
Appendix B ASTM E 84 – SURFACE BURNING CHARACTERISTICS (BODYCOTE TESTING GROUP)

Bodycote Testing Group

ASTM E 84 Surface Burning Characteristics of "Spaceloft" Blanket Insulation

For: Aspen Aerogels Inc.

Report No. 08-002-884(A)

REGISTRATION ISO 9001:2000, registered by QMI. Registration #001109.

SPECIFICATIONS OF ORDER

Determine the Flame Spread and Smoke Developed Indices based upon a single test conducted in accordance with ASTM E 84-08a as per your P.O. #308224 and our Quotation No. 08-002-10214 accepted October 27, 2008.

SAMPLE IDENTIFICATION (Bodycote sample identification number 08-002-80884)

Blanket insulation material identified as: “P/N S100087, Lot BLKT 253”.

TEST PROCEDURE

The method, designated as ASTM E 84-08a, "Standard Method of Test for Surface Burning Characteristics of Building Materials", is designed to determine the relative surface burning characteristics of materials under specific test conditions. Results are expressed in terms of Flame Spread Index (FSI) and Smoke Developed (SD).

Although the procedure is applicable to materials, products and assemblies used in building construction for development of comparative surface spread of flame data, the test results may not reflect the relative surface burning characteristics of tested materials under all building fire conditions.

SAMPLE PREPARATION

The sample, which consisted of one continuous section approximately 24 feet in length by 21 inches in width by 0.4 inches in thickness, was conditioned at a temperature of 73 ± 3°F and a relative humidity of 50 ± 5% prior to testing. During testing the sample was supported over its entire length by 2" hexagonal wire mesh and was further supported by ¾” steel rods spaced nominally at two-foot intervals.

The testing was performed on: 2008-11-12

SUMMARY OF TEST PROCEDURE

The tunnel is preheated to 150°F, as measured by the floor-embedded thermocouple located 23.25 feet downstream of the burner ports, and allowed to cool to 105°F, as measured by the floor-embedded thermocouple located 13 feet from the burners. At this time the tunnel lid is raised and the test sample is placed along the ledges of the tunnel so as to form a continuous ceiling 24 feet long, 12 inches above the floor. The lid is then lowered into place.
Appendix B ASTM E 84 – SURFACE BURNING CHARACTERISTICS (BODYCOTE TESTING GROUP)

Bodycote Testing Group

ASTM E 84 Surface Burning Characteristics of “Spaceloft” Blanket Insulation

For: Aspen Aerogels Inc.

Page 3 of 4

Report No. 08-002-854(A)

SUMMARY OF TEST PROCEDURE (continued)

Upon ignition of the gas burners, the flame spread distance is observed and recorded every 15 seconds. Flame spread distance versus time is plotted ignoring any flame front recessions. If the area under the curve (A) is less than or equal to 97.5 m²/m, FSI = 0.515-A; if greater, FSI = 4900/(195-A). Smoke Developed is determined by comparing the area under the obscuration curve for the test sample to that of inorganic reinforced cement board and red oak, arbitrarily established as 0 and 100, respectively.

TEST RESULTS

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>FSI</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Spaceloft” Blanket Insulation</td>
<td><5</td>
<td>20</td>
</tr>
</tbody>
</table>

Observations of Burning Characteristics

- The sample began to propagate flame approximately 0.5 minutes after exposure to the test flame.
- The flame front propagated to a maximum distance of 0.5 feet at approximately 0.5 minutes and receded to the baseline by approximately 2.5 minutes.
- Smoke Developed was recorded during the test (see accompanying chart).

Authorities having jurisdiction usually refer to these categories:

<table>
<thead>
<tr>
<th>Flame Spread Index</th>
<th>Smoke Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1 or A</td>
<td>0 - 25</td>
</tr>
<tr>
<td>Class 2 or B</td>
<td>26 - 75</td>
</tr>
<tr>
<td>Class 3 or C</td>
<td>76 - 200</td>
</tr>
</tbody>
</table>

Note: This is an electronic copy of the report. Signatures are on file with the original report.

Robert A. Carleton, Ian Smith,
Fire Testing, Fire Testing

Note: This report consists of 4 pages, including the cover page, that comprise the report "body". It should be considered incomplete if all pages are not present.
Appendix B ASTM E 84 – SURFACE BURNING CHARACTERISTICS (BODYCOTE TESTING GROUP)

Bodycote Testing Group

ASTM E 84 Surface Burning Characteristics of “Spaceloft” Blanket Insulation
Page 4 of 4

For: *Aspen Aerogels Inc.*
Report No. 08-002-884(A)

FLAME SPREAD INDEX

![Flame Spread Index Graph]

- **Sample**
- **RED OAK (FSC=100)**

SMOKE DEVELOPED

![Smoke Developed Graph]

- **Sample**
- **RED OAK (SD=100)**

FSI
<5

SD
20
Appendix C ASTM E 228 – LINEAR COEFFICIENT OF THERMAL EXPANSION (NETZSCH)

Applications Laboratory
Thermophysical Properties Section

Thermal Expansion of Spaceloft

621001667

Prepared for:
Aspen Aerogels Inc.
30 Forbes Road
Northborough, Massachusetts 01532

Prepared by
Michael Manuelian
NETZSCH Instruments, Inc.

February 2009
Appendix C ASTM E 228 – LINEAR COEFFICIENT OF THERMAL EXPANSION (NETZSCH)

NETZSCH

Thermal Expansion of Spaceloft

Introduction
The Thermophysical Property Section of the NETZSCH Instruments Testing Laboratory, Burlington, MA, received one spaceloft sample from Aspen Aerogel for measurement of thermal expansion. The sample was submitted as a sheet, from which test samples approximately 25mm in length were cut from both the X and Y direction.

The thermal expansion was measured in accordance with ASTM E288 using a NETZSCH model 402C pushrod dilatometer, as shown in Figure 1. This dilatometer was equipped with a low temperature furnace capable of operation between -175 and 450°C. The system is vacuum tight, allowing measurements to be carried out in pure inert or oxidizing atmospheres, as well as under vacuum. A set of primary standards, including fused silica, sapphire, platinum, tungsten, etc., is available for the system calibration. The expected expansion of the specimen and the temperature range of the measurement normally dictate which standard is used. Data acquisition and evaluation, as well as instrument control, are accomplished with a MS®-Windows™ Thermal Analysis software package. The software includes semi-automatic routines for correction of the sample holder expansion, as well as computation of the expansion coefficients, onset and peak temperatures, inflection points, rate of expansion, etc.
Appendix C ASTM E 228 – LINEAR COEFFICIENT OF THERMAL EXPANSION (NETZSCH)

Figure 1

Test Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature program</td>
<td>-170°C – 100°C, 3K/min</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>He</td>
</tr>
<tr>
<td>Sample holder</td>
<td>Fused Silica</td>
</tr>
<tr>
<td>Contact force of pushrod</td>
<td>30 cN</td>
</tr>
<tr>
<td>Sample length</td>
<td>X 28.07 mm, Y 24.82 mm</td>
</tr>
</tbody>
</table>

Reference 621001667 2 February 2009